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Abstract. The dynamical critical exponent z is obtained using the finite-size scaling method 
for the two-dimensional three-state Potts model with conserved dynamics. It is observed 
that there is a change in the dynamical behaviour of the system at the size n = 1.5. For 
finite lattices of sizes n 15, the value of z is predicted as z = 2.0k0.1. For n 3 1.5, the 
asymptotic behaviour is observed and z is calculated as z = 2.78 * 0.20. 

1. Introduction 

Studies on the dynamics of the two-dimensional three-state Potts model have resulted 
in a range of different values of the dynamical critical exponent z. Forgacs et a1 (1980) 
obtained a value of z = 2.25 using a Migdal type of recursion method. Binder (1981) 
calculated the non-linear exponent A"' as A"'= 1.9 through a Monte Carlo simulation 
using dynamical scaling and found that A"' is independent of the number of states. 
His result corresponds to a z value of z=2.41 from the relation z =  ( A " ' + p ) / v .  
Tobochnik and Jayaprakash (1982) used a dynamic Monte Carlo simulation method 
to obtain z. Their result is z = 2.7*0.4. Aydin and Yalabik (1984) calculated z using 
a dynamic Monte Carlo renormalisation group method. They found exactly the same 
value as obtained by Tobochnik and Jayaprakash. Later, Aydin and Yalabik (1985) 
used the finite-size scaling method to find z. They obtained z =2.2*0.1. Domany 
(1984) predicted a value for z of 2.8 through the relation zv = 2 + (Y which is obtained 
using hyperscaling. 

Recently, Lage (1986) calculated z as z = 2.53 for the two-dimensional three-state 
Potts model using a dynamical theory which includes a decimation procedure. De 
Arcangelis and Jan (1986) found a value for z, z =2.43*0.15. They used a dynamic 
Monte Carlo renormalisation group method with Glauber dynamics. Tang and Landau 
(1986) calculated the non-linear exponent as A"'=2.1 and they found that A"' is 
independent of the number of states. Their result is consistent with the value obtained 
by Binder (1981). Lage (1987) studied critical dynamics of general q-state Potts models 
on d-dimensional hypercubic lattices. He used a simple bond moving technique, 
followed by a decimation, and obtained z = 2.76 for d = 2 and 4 = 3. 

In the present study, the dynamical critical exponent z is calculated for the 
two-dimensional three-state Potts model. To our knowledge, this is the first study of 
this model using conserved dynamics. The finite-size scaling method is used to obtain 
the relaxation times for system sizes n = 3,6,  . . . ,21.  The value of z is calculated as 
z = 2.78 *0.20 for sizes n 2 15. A prediction is made for n s 15. The result is z = 
2.0* 0.1. 
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The layout of this paper is as follows. In $ 2 ,  the method and procedure are 
described. The results and discussions are given in § 3. 

2. The method and procedure 

The Potts model can be defined through the Hamiltonian H of the form 

where the summation is over all nearest-neighbour sites, k is the Boltzniann constant, 
T is the temperature and S, represents spin variables on a lattice. K corresponds to 
the nearest-neighbour coupling and has a critical value K , ,  K ,  = In( 1 + d3)  which is 
an exact result (Potts 1952). 

The asymptotic behaviour of a finite-size system (at the critical temperature of the 
infinite system) can be shown by the relation (Suzuki 1977) 

7 - n z  (2) 

where 7 is the relaxation time, n is the size of the system and z is the dynamical critical 
exponent. For small sizes, at which the asymptotic behaviour cannot be reached, the 
free energy expression with a correction term (Barber 1983) can be used to describe 
the behaviour of the system. In the case of dynamical scaling, equation (2) is expected 
to have the form 

r -  n ' ( l +  an-") (3) 

for small system sizes. Here 4 is the correction to scaling exponent and a is a constant. 
The finite-size scaling method (Aydin and Yalabik 1985) is used to obtain the 

relaxation times for different system sizes. A random-spin configuration is generated 
initially and the system is relaxed to equilibrium through a standard Monte Carlo 
procedure (Binder 1981). Time is measured in Monte Carlo steps (MCS). The order 
parameter is conserved by exchanging the spin states of two nearest-neighbour sites 
if the new configuration corresponds to lower energy. In this manner, the total number 
of each of the three states in the lattice is conserved locally and globally. The absorption 
of atoms on some surfaces can be described by the two-dimensional three-state Potts 
model (see for example the study by Berker (1978)). The conserved dynamics is an 
example of the chemisorption of atoms on surfaces. 

The relaxation times are calculated using the average time-dependent correlation 
functions which can be obtained from the relation 

C( t )=(S , ( t+ t ' )S , ( t ' ) )  (4) 

where the average is taken over t '  and the spin sites i, j .  S, and S, correspond either 
to neighbouring spins (nearest-neighbour correlation) or to the same spin (self-correla- 
tion). C( t )  is calculated for square lattices of sizes n = 3,6,  . . . ,21. At sufficiently 
long times, C ( r )  is expected to relax with the largest time constant T of the system, r 
can be evaluated using the time variation of C ( t )  for each size. 

The relaxation time values (T) and the total time (in MCS) elapsed to reach the 
equilibrium for different system sizes are given in table 1. Figure 1 shows the log-log 
plot of T as a function of n. For sizes n S 15, the system exhibits a non-asymptotic 
beahviour, as can be seen from figure 1. Through a fitting procedure, a prediction is 
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Table 1. The relaxation time values ( 7 )  calculated and the total time (in MCS) elapsed to 
reach the equilibrium for system sizes n = 3 , 6 , .  . . ,21 

Total number Number of 
n 7 Of MCS independent runs 

3 1.27 16 x lo5 1 
6 2.50 6 x  lo5 2 
9 3.68 1 2 ~  io5 3 

12 4.73 -7 x los 2 
15 6.35 -4 x 105 3 
18 10.40 7 x 1 0 5  4 
21 16.21 54.14 - 4 x  lo5 1 
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Figure 1. The log-log plot of T as a function of n. 

made for the value of z and the correction to scaling exponent 4 using equation (3). 
The results are z = 2.0*0.l  and 4 = 0.79 i0.16. When the sizes n = 18 and n = 21 are 
included in this calculation, it is not possible to obtain a set of z and 4 values. For 
these sizes, the data points in figure 1 have a tendency to lie on a line including the 
size n = 15. Hence z is calculated using the asymptotic relation (equation (2))  for 
n 2 15. The result is z = 2.78 f 0.20. For sizes n 2 15, the second term in equation (3) 
is expected to be negligibly small. In fact, use of equation (3) (to check the validity 
of equation ( 2 )  for these sizes) gives the same result with the best fit values z = 2.785 
and 4 = 0. 

3. Results and discussions 

In the present study, the value of the dynamical critical exponent z is calculated for 
the two-dimensional three-state Potts model with conserved dynamics. Two different 
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values are obtained depending on the size of the system. The value z = 2.78 * 0.20 for 
system sizes n 2 15 is consistent with the results of Tobochnik and Jayaprakash (1982), 
Aydin and Yalabik (1984), Domany (1984) and Lage (1987). The value z = 2.01  0.1 
for n s 15 is consistent with the results of the studies by Forgacs et a1 (1980) and 
Aydin and Yalabik (1985). 

The models having non-conserved and conserved order parameters show different 
behaviours in time variations of self- and nearest-neighbour correlations. When the 
same method was used for the model having non-conserved order parameter (Aydin 
and Yalabik 1985), self- and nearest-neighbour correlations showed the same time 
variations for sizes n = 2,3, .  . . ,7,10,16. The asymptotic behaviour was observed and 
z was obtained using equation (2). In the conserved case, the relaxation times are 
much smaller than those of the non-conserved model and the self- and nearest- 
neighbour correlations have different time variations. Nevertheless, they result in the 
same z value. When the conserved order parameter is used, the asymptotic behaviour 
cannot be reached for sizes n S 15, hence z is obtained using equation (3) instead of 
equation (2). The Ising behaviour is observed in both models for the sizes n s 15. 

The errors in T values for sizes n < 21 are negligibly small since the computations 
are carried out in a large number of MCS compared to the relaxation times and several 
independent runs are made for each size. Because of the limits imposed by available 
computer facilities, the relaxation time for the size n = 21 cannot be obtained with an 
accuracy comparable to the accuracies achieved for the other sizes. The error in z 
value, z = 2.0k0.1, may be due to the errors arising from the fitting procedure, while 
the error in the value z = 2.78 * 0.20 is mainly due to the error in the relaxation time 
for the size n = 21. For sizes n 2 15, one should go to larger lattices to obtain a reliable 
value for z using equation (2).  
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